
Spatial Correlations near Turing Instabilities: Criteria for Wavenumber Selection

William Vance and John Ross*
Department of Chemistry, Stanford UniVersity, Stanford, California 94305

ReceiVed: NoVember 17, 1998

We analyze the probability distribution and spatial correlations around a stationary state of a general reaction-
diffusion system. The stochastic description is based on a multivariate master equation. We use a WKB
expansion of the probability density and determine the leading term, the stochastic potential, to second order
in deviations from a homogeneous stationary state. For a system below, but near, a Turing instability, the
spatial correlations become long range and display a macroscopic structure that will emerge after the bifurcation.
We derive explicit expressions for both the probability density and the correlation function. For systems
close to the instability, the correlation function is approximately an exponentially damped cosine function.
We derive explicit expression for the correlation length and the amplitude of the correlation function; they
are inversely proportional to the square root of the largest eigenvalue of the deterministic system. Our approach
differs from earlier work in that systems with many chemical species are treated, asymptotic approximations
are derived, correlations are given a geometrical picture in terms of eigenvectors of the Jacobian of an associated
Hamiltonian system, and higher order terms in the stochastic potential are possible to obtain analytically
(which we do not pursue). Results of the theoretical analysis are applied to the Sel’kov model. Exact and
approximate solutions at lowest order agree well.

I. Introduction

A phenomenon of great interest, from both an historical and
scientific standpoint, is the generation of stationary spatial
patterns in nonlinear chemical systems through the interplay of
reaction and diffusion. First proposed by Turing,1 these struc-
tures are produced by a mechanism that is independent of the
details of the kinetic system and geometric parameters. Instead,
more general considerations allow the spontaneous development
of patterns from spatially uniform stationary states.2 Since their
introduction, they have been used to explain various biological
patterns: subcellular metabolic function, cellular differentiation,
and morphogenesis.3 These patterns arise as a system evolves
from a homogeneous stable state through a marginally stable
state. In the pretransitional regime, fluctuations play an important
role by exploring nearby states. We study the probability density
and correlations in systems close to, but before, Turing
instabilities and show that as the instability point is approached
correlations become very large in amplitude and develop a
macroscopic spatial structure with the same wavelength as that
of the pattern which develops beyond the instability. This
enhancement of structured fluctuations provides a method for
using fluctuations as predictors of Turing instabilities and
macroscopic patterns in pre-Turing bifurcation systems.

Turing instabilities may arise in systems where there is some
autocatalysis (positive feedback). Two variable systems gener-
ally have an identifiable activator and inhibitor (of the auto-
catalytic reaction) and may be classified as either activation-
inhibition or activation-depletion, depending upon the signs
of the linear evolution matrix. Diffusion tends to reestablish a
homogeneous state. For the instability to arise, the diffusion
coefficient of the inhibitor has to exceed that of the activator
by an amount that depends upon the kinetics, though for most
realistic models the difference must be at least an order of
magnitude. This requirement has, until recently, prohibited
experimental realization. To eliminate hydrodynamic currents,

continuous flow unstirred reactors have been developed where
reaction takes place in a thin layer of gel; in addition, the
mobility of the activator is lowered by interaction with a low-
mobility compound.4-7 Experimental wavelengths are in the
range 10-3-1 cm. Recent calculations suggest that Turing
structures may also exist on a mesoscopic scale, 0.1-1 µm.8

Theoretical studies of patterns and instabilities in spatially
extended systems have treated both purely deterministic and
stochastic systems. Work on deterministic systems has shown
how nonlinear interactions between linearly unstable eigenmodes
produce various patterns beyond the bifurcation.2,9,10Even low
(spatial) dimension systems exhibit complex bifurcation dia-
grams. For example, in two dimensions, the Turing bifurcation
may show the following sequence: a stable hexagonal structure
appears subcritically; the primary bifurcation to a striped
structure appears supercritically, but is unstable at first; the
stripes become stable for higher parameter values and coexist
with the hexagonal structure over an interval of parameter
values9 Stochastic treatments generally approach the problem
on a mesoscopic level using a multivariate master equation. A
result of the complexity of this equation, most studies have
concentrated on nonpattern-forming bifurcations, specifically
homogeneous cusp and Hopf bifurcations. Cusp bifurcations
show “nonclassical” behavior of correlations in low spatial
dimensional systems (d < 4).11,12 In the case of a Hopf
bifurcation, macroscopic oscillations may be destroyed by
fluctuations in low dimensional (d < 3) systems.13,14

Previous work on the subject of this paper, fluctuations in
systems close to the Turing instability, has yielded an explicit
formula for the correlation function for two-variable systems
in one spatial dimension.15 This work truncates the moment
equations and results in classical exponents for the divergence
of the correlation length and variances within cells. Our work
extends and simplifies these results to arbitrary numbers of
species and dimensions. We use a different formalism, the
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stochastic potential,16-19 which allows a geometrical interpreta-
tion of the probability density in terms of an unstable manifold
of an associated Hamiltonian system. These equations also
permit easy numerical evaluation of the global probability
density. In this paper, we concentrate on local aspects of the
stochastic potential. We approximate the Hamiltonian to second
order in deviations from a homogeneous stationary state. This
leads to a second-order approximation for the stochastic
potential, the Gaussian approximation, which may be determined
from matrix eigenvalue problems. Higher-order terms may be
found through normal form transformations;20 we do not pursue
these here.

In the following sections, we present equations and summarize
results; details of calculations are relegated to the Appendix.
In section II.A, we summarize the multivariate master equation
treatment of reaction-diffusion systems and introduce the
stochastic potential. We formulate a Hamiltonian system, the
solution of which determines paths that most probable fluctua-
tions follow. The integral of the associated Lagrangian along
these trajectories gives the stochastic potential. In section II.B,
we discuss the solutions to the Hamiltonian system linearized
about a stationary state. This leads to the Gaussian approxima-
tion of the stochastic potential. The correlation function is treated
in section II.C. In section III.A, we give an approximation for
spatial correlations in systems close to Turing instabilities; in
section III.B, we illustrate our exact and approximate equations
by numerical examples on the Selkov model. Section IV
contains some concluding remarks.

II. Reaction-Diffusion Master Equation

A. General Formulation and WKB Approximation. In the
following, we give a brief outline of the master equation
formulation for a general reaction-diffusion system.15 We
considerm chemically active species in a volumeV ) Ld in
d-dimensional space. The lengthL along each spatial axis is
divided inton segments, by which cells of volume∆V ) V/nd

are constructed. The cells are labeled by a vectorq ) (q1, ...,
qd), qi ) 1, ...,n, and periodic boundary conditions are imposed
qn+l ) q1. We take as variables the numbers of particles{XqR}
within cells and assume that they define a Markov process.
These random variables change as a result of chemical reactions,
which are modeled as jump Markov processes, and diffusion,
which is modeled as a random walk between adjacent cells.21

This leads to a multivariate master equation for the probability
distributionP({XqR},t):

where the transition probability per unit time for theFth reaction,
WF, is

The stoichiometric coefficient ofXR in theFth chemical reaction
is νFR; the order of theFth reaction with respect toXR is νjFR;

the kinetic coefficient of theFth reaction iskF. Nearest neighbors
of cell q are denoteda. The jump frequencyD̃R of speciesR is
related to Fick’s diffusion coefficient by

wherel ) L/n is the characteristic length of a cellld ) ∆V.
Several conditions must be met for eq 1 to describe correctly

reaction-diffusion systems.22 Besides the Markovian assump-
tion, local equilibrium must prevail, which requires a large
number of molecules per cell. Also, the size of a cell must be
small enough (less than the correlation length) that homogeneity
holds and yet not so small that microscopic aspects, such as
deviations from the Maxwell-Boltzmann velocity distribution,
need to be incorporated. Typically, cell dimensions should be
of the order of the reactive mean free path the distance a particle
travels before it undergoes a reactive collision.

We consider∆V as a large parameter, since a large number
of particles are contained within a cell, and writeP to leading
order as an asymptotic WKB form:16-19

wherexqR ) XqR/∆V. In the following, we are concerned with
S, the stochastic potential (also referred to as the nonequilibrium
potential), and neglect the prefactorK. Substituting eq 4 in eq
1, we obtain to leading order a Hamilton-Jacobi type of
equation for the stochastic potential

where

Equation 5 is the Hamilton-Jacobi equation for an associated
classical mechanical system with HamiltonianH. Hamilton’s
equations of motion for the system with this Hamiltonian are
given in the Appendix (eqs 47 and 48). These equations
determine trajectories in 2mnd-dimensional phase space, whose
concentration and momenta arexqR andpqR, respectively. The
stochastic potential satisfies the differential equation

along any trajectory of eqs 47 and 48, where the Lagrangian
corresponding to the HamiltonianH is

Equation 7 may be integrated along with Hamilton’s equations
to give the value of the stochastic potential along any classical
trajectory. This holds for both stationary and time-dependent
densities.

∂P

∂t
) ∑

F
∑

q

[WF(Xq - νF f Xq) P({XqR - νFR})

- WF (Xq f Xq + νF)P]

+ ∑
R

D̃R

2d
∑
q,a

[(XqR + 1) P (XqR+ 1, X(q+a)R - 1)

- XqRP] (1)

WF(Xq f Xq + νF) ) kF∆V1-∑RνjFR ∏
R

(XqR)!

(XqR - νjFR)!
(2)

D̃R

2d
l2 ≈ DR (3)

P({xqR},t) ) K({xqR},t) exp(-∆V S({xqR},t)) (4)

-
∂S

∂t
) ∑

F
∑

q

wF(xq) [exp(∑â

∂S

∂xqâ

νFâ) - 1] +

∑
R

D̃R

2
∑
q,a

xqR [exp(-
∂S

∂xqR

+
∂S

∂x(q+a)R
) - 1]

≡ H ({xqR}, { ∂S
∂xqR

}) (5)

wF(xq) )
WF(Xq f Xq + νF)

∆V
(6)

dS
dt

) L({xqR},{xqR}) (7)

L )
∂S

∂t
+ ∑

q,R

∂S

∂xqR

dxqR

dt
) ∑

q,R
pqR

dxqR

dt
- H (8)
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We are concerned with stationary distributions, for which the
associated classical trajectories lie on the unstable manifold of
the stationary state(xqR ) xs, pqR ) 0).23 On this (Lagrangian)
manifold, the energy is zero. The classical trajectories, when
projected down onto concentration space, determine most
probable fluctuational paths (the characteristics).19 For small
deviations from the stationary state, these trajectories may be
approximated by solutions to Hamilton’s equations linearized
about the stationary state. The unstable eigenvectors of the
Jacobian matrix then determine the stationary density through
eq 7. Details of this solution are supplied in the Appendix. In
the following, we concentrate on the structure of the solutions
for the probability density and correlation function.

B. Gaussian Approximation of the Stochastic Potential
near a Stationary State. In this and the following sections,
we consider systems in one spatial dimension. The general
d-dimensional problem is treated in the Appendix. We follow
the notation and method as developed in our earlier papers.24,25

We write an arbitrary periodic deviation from the stationary
state,urR ) xqR - cR, as a discrete Fourier series

where

is the discrete Fourier transform offqR. For convenience, we
take the number of cellsn to be even. This allows the
independent Fourier terms to be expressed ask ) -n/2 +1, ...,
n/2. Using the results in the Appendix (for the matrices V and
W), we may write the stochastic potential for the above deviation
(under periodic boundary conditions) as

where

The matricesEk andFk arem× m-dimensional matrices, whose
columns are comprised of eigenvectors in the unstable space
of the matrix in eq 59 of the Appendix. The subscriptk denotes
the wavenumber used in the eigenvalue problem. As discussed
in the next section, the matrix¥ satisfies a fluctuation-
dissipation relation, from which the solution may also be found.

On letting the number of cells tend to infinity, we obtain a
similar formula for the potential, eq 11, but withE and F
determined by eq 61. In this limit, the sum onk extends to
infinity and the coefficients are obtained from the Fourier
transform of a continuous vector-valued functionf(r) on
(-L/2, L/2), wherer ) qL/n andq ) 1 - n/2...n/2:

Using the previous result for infinitely many cells and taking
the infinite system size limitL f ∞, we obtain

whereη ()2πk/L) is a continuous variable,¥-1(η) is the matrix
inverse of¥(η), andg(η) is the Fourier transform off(x):

Now we have¥(η) ) E(η)F-1(η) and columns of the matrices
E andF are comprised of eigenvectors in the unstable space of
the matrix eq 59 withÃ(η) and B̃(η), eq 61, replacingÃk and
B̃k. Using the property that¥ is an even function ofη (see eq
17), we may write the probability density as

The local density is determined by the structure of¥-1(η) as
a function ofη. In section III.A, we show that for a system
close to a Turing instability,¥ exhibits a maximum forη close
to the Turing wavenumber. This enhanced probability of a
structured fluctuation may be measured by the correlation
function, which we discuss next.

C. Correlation Function. The spatial correlation function
〈uqRuq′R′〉 is related to the matrixVW-1 of the quadratic
approximation of the stochastic potential, eq 57, through
(n/L)(VW-1)-1. Using the factorization ofV and W, eqs 62-
64, we obtain the following expression for a finite (even) number
of cells n and lengthL:

This result is valid for general reaction schemes that are not
too close to points of instability. We see that the correlation
function is essentially the discrete Fourier transform of the
matrix ¥k. Hence, the correlation range and structure is
determined by this matrix as a function ofk.

Using eq 59, we find that for eachk, ¥k satisfies a
fluctuation-dissipation relation

For a large number of cells andk . L, the matricesÃk andB̃k

tend to-η2D and 2η2DC, respectively, whereη ) 2πk/L and
C is the diagonal matrix of stationary state concentrations [see
eq 61]. From this relation, we have the property that¥k tends
to C for k f ∞. The contribution of a constant matrixC to the
sum in eq 16 diverges withn. We separate this part from the
sum and write the correlations as

The first term of this expression derives from a Poissonian
distribution and is due to fluctuations caused by diffusion. The
rest of the expression involves long-range correlations and is
due to the coupling of reaction and diffusion. The correlation
length is determined by the dependence of the prefactor of the
cosine term,¥k - C, onη. In the next section, we approximate
this (structure) function for systems close to a Turing instability.

In the limit of infinitely many cells, the term with a Kronecker
delta becomescRδRR′δ (r - r′), whereδ() denotes the Dirac

uqR ) fqR ) ∑
k)1-n/2

n/2

akRe2πikq/n (9)

akR )
1

n
∑
q)1

n

fqRe-2πikq/n (10)

S)
n

2
∑

k)1-n/2

n/2

∑
R,â

akR (¥k
-1)Râ akâ (11)

¥k ) EkFk
-1 (12)

akR ) 1
L∫-L/2

L/2
fR(r) e-2πikr/n dr

S[f] ) π(Ln)-1∫-∞

∞
g(η)‚¥-1(η)g(η) dη (13)

g(η) ) 1
2π∫-∞

∞
eiηrf(r) dr (14)

P[f] ) exp(-2π ∫0

∞
g(η)‚¥-1(η)gj(η) dη) (15)

〈uqRuq′R′〉 ) L-1 ∑
k)1-n/2

n/2

(¥k)RR′e
2πik(q-q′)/n (16)

Ãk¥k + ¥k (Ãk)
T + B̃k ) 0 (17)

〈uqRuq′R′〉 ) L-1[nCRR′δqq′ + (¥0)RR′]

+
2

L
∑
k)1

n/2-1

(¥k - C)RR′ cos
2πk

n
(q - q′)

+ 1
L

(¥k - C)RR′ cosπ (q - q′) (18)
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delta function. Letting the system size increase,L f ∞, we may
write the sum overk as an integral overη ()2πk/L):

where

The matrix¥(η) satisfies a fluctuation-dissipation relation:
eq 17 with the matricesÃk and B̃k and the Fourier variablek
replaced byÃ(η), B̃(η), [eq 61] andη, respectively. We note
from eq 17 and the definitions of the matricesÃ(η) and B̃(η)
that the matrix¥(η) is an even function ofη. The Fourier
transform of eq 19 is simply the matrix¥:

The structure function¥RR′(η) determines the correlation
amplitude and length through a cosine transform, eq 20. In the
next section, we study the dependence of these properties on
the distance to the bifurcation. We show that the maximum of
¥(η), which is near the critical wavenumber, increases without
bound as the bifurcation point is approached.

III. Approximations and Numerical Results near a
Turing Instability

A. Spatial Correlations near a Turing Instability. As
shown in section II.C, the matrix¥ determines the structure of
the correlation function. The solution to the fluctuation-
dissipation relation for¥(η), eqs 17 and 68, may be expressed
in terms of a matrixU(η) that diagonalizes the Jacobian of the
deterministic system,Ã(η), eqs 60 and 61, and the eigenvalues
of Ã(η), denotedλi(η), i ) 1, ...,m.Straightforward calculations
give the general solution as

where

The matrixA is the Jacobian matrix for the homogeneous (well-
stirred) deterministic system.

For a system that is close to a Turing instability, one of the
eigenvalues ofÃ(η) tends to zero as the bifurcation point is
approached. In this case, the dominant contribution toH(η)
comes from the term that contains the reciprocal of the near-
zero eigenvalue, which we denoteλ1. Keeping only this term
in eq 22 yields the approximation

where the right and left eigenvectors ofA(η) corresponding to
the eigenvalueλl(η) are denotedú(η) andú* (η), respectively:

We normalize these eigenvectors such thatú* ‚ ú ) 1.

In order to proceed further with this approximation of¥, eq
24, we need to determine how the eigenvalue closest to zero,
λ1(η), depends onη and on the distance to the bifurcation. As
a function ofη, this eigenvalue exhibits a maximum at a critical
point, which depends upon the distance to the bifurcation. We
denote this critical point asηc(ε), whereε is a (small) expansion
parameter that is zero at the bifurcation. In the vicinity of this
point, the eigenvalue is a quadratic function ofη - ηc(ε). We
consider both the distance to the bifurcation and the distance
to the critical point as small and take as expansion parameters
ε and∆η ) η - ηc(ε). We expand the critical point inε, ηc(ε)
) η0 + εη1 + O(ε2), and write the eigenvalue as

We also expand the eigenvector corresponding toλl and the
matrix Ã:

Putting these expressions into the eigenvalue problem, eq 25,
and collecting terms with equal powers ofε, we obtain an
hierarchy of equations to be solved for the coefficients. Then,
for each power ofε, we collect terms with equal powers of∆η.
For ε0, we obtain

The solution to eq 30 is the eigenvector corresponding to
eigenvalue zero (at the bifurcation point,ε ) 0); we denote
this solution asú0. We will also need the left eigenvector of
the matrix in eq 30, which we denoteú0

*.

We may normalize the eigenvectors so thatú0 ‚ ú0
* ) 1.

Then, the solvability condition26 for eqs 31 and 32 may be stated
as the orthogonality of the right-hand sides of these equations
to ú0

*. For eq 31, this condition is

As there are no adjustable parameters, this equation should
always be true for any system undergoing a Turing bifurcation.
From the previous normalization of the eigenvectors, we see
that the diffusion coefficients must not all be the same value.
In two-species systems, the coefficients of the activator and
inhibitor typically differ by an order of magnitude. Verification
of eq 33 may be obtained by differentiating the full eigenvalue
equation (withη dependence) with respect toη (at ε ) 0) and

〈uR(r) ua′(r′)〉 ) cRδRR′δ(r - r′) + hRR′(r - r′) (19)

hRR′(r - r′) ) 1
π∫0

∞
(¥(η) - C)RR′ cosη(r - r′) dη (20)

1
2π∫-∞

∞
〈urR ur′R′〉 eiη(r-r′) d(r - r′) ) 1

2π
¥RR′(η) (21)

¥(η) ) -U(η) H(η) UT(η)

Hij(η) ){U-1(η) B̃(η)[UT(η)]-1}ij/(λi(η) + λj(η)) (22)

[Ã(η) U(η)] ij ≡ [(A - η2D)U(η)] ij ) λi(η) Uij(η) (23)

¥RR′(η) ≈ ú*(η)‚B̃(η) ú*(η)

2λ1(η)
úR(η) úR′(η) (24)

Ã(η) ú(η) ) λ1(η) ú(η) (25)

(Ã)Tú*(η) ) λ1(η) ú*(η) (26)

λ1(η) ) R(ε)[η - ηc(ε)]2 + â(ε)

) (R0 + εR1)(∆η)2 + εâ1 + O(ε2) (27)

ú(ε,∆η) ) ∑
i)0

∑
j)0

ε
i(∆η)jú(i,j) (28)

Ã(ε, ∆η) ) A(ε) - η2D ) ∑
i)0

ε
iAi - η2D

) ∑
i)0

ε
iAi - (η0 + ∆η + εη1 + ...)2 D (29)

(∆η)0: (A0 - η0
2D) ú(0,0) ) 0 (30)

(∆η)1: (A0 - η0
2D) ú(0,1) ) 2η0Dú(0,0) (31)

(∆η)2: (A0 - η0
2D) ú(0,2) ) 2η0Dú(0,1) + (D + R0) ú(0,0)

(32)

ú0
*‚Dú0 ) 0 (33)
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evaluating the resulting derivative atη ) η0. As the solvability
condition is always fulfilled, eq 31 may be solved forú(0,1). To
make the solution unique, it is necessary to add a (any)
normalization condition, e.g.ú(0,1). ú0

* ) 0 or 1.

The solvability condition for eq 32 forú(0,2) determines the
parameterR0:

To determine the other coefficients of interest,R1, â1, andη1,
we expand the orderε1 equation in powers of∆η. Straightfor-
ward calculations give the expressions

The solvability conditions for these equations (forú(1,0), ú(1,1),
andú(1,2)) determine the coefficients andú(l,i) in succession:

Each vector ú(1,i) is uniquely determined by imposing a
normalization condition, e.g.,ú0

*‚ú(1,i) ) 0.

The adjoint eigenvectorú* (ε, ∆η), which is needed in the
approximation of¥, eq 24, may also be approximated near a
Turing instability using an expansion in bothε and∆η (cf eq
28). Substituting this power series into the eigenvalue equation
and collecting like power terms, we arrive at a hierarchy of
equations forú* (i,j), which are the above equations, but withA0

replaced byA0
T. The solvability conditions for these equations

are the same as those above and hence are satisfied onceú(i,j)

are determined.

We may approximate the correlation function, eq 19, for
systems close to a Turing instability, using the above expansions.
Retaining only the dominant terms, we obtain the following
expression for¥RR′(η)

where the constantΦRR′ is

[We note that this expression may also be used in eq 13 to
approximate the stochastic potential near a Turing instability.]
Using λ1 (η) ≈ R0 (∆η)2 + εâ1, we have the values at which
¥RR′ has half its maximum value atη ) η0 ( (εâ1/R0)1/2, i.e.,
the half width of¥RR′ is (εâ1/R0)1/2. We recognize that¥ has a
resonant line shape as in classical radiation theory.27 The integral
in eq 20 for the non-Poissonian part of the correlation function
is

In this approximation, the correlation function is an exponen-
tially damped cosine. The wavelength at leading order is that
of the eigenvector corresponding to the maximum eigenvalue
of the deterministic equations. The amplitude of the correlation
function is inversely proportional to the square root of the
maximum eigenvalue of the deterministic equations. We also
obtain the correlation length as inversely proportional to the
width of ¥RR′ and to the square root of the maximum eigenvalue:

where primes denote derivatives with respect toη. As the
bifurcation point is approached, the correlation length and the
correlation function diverge with a classical square root
behavior. (This classical exponent is due to the Gaussian
approximation and is not valid for systems very close to the
bifurcation point.)

We note that the wavelength and correlation length (decay
rate) are described by purely deterministic quantities: the critical
wavenumberη0; largest eigenvalueεâ1 [i.e., maximum ofλ1

(η)]; the second derivative ofλl [with respect toη], R0. The
only term containing explicit stochastic influences isΦRR′ which
determines the amplitude of the correlation function.

B. Numerical Results.To illustrate our theoretical results,
we carry out calculations for a two-variable model, the Selkov
model.28 The mechanism consists of the following chemical
reactions

The concentrations of the species C1 and C2, denoted theC1

andC2 same, are kept constant, while the concentrations of the
two intermediates, denotedx and y, are allowed to vary. We
use the following set of parameter values:k2 ) 1.16; k3 )
0.0016;k4 ) 0.00022;k5 ) 2; k5C2 ) 5.17, and takek1C1 as an
externally controllable parameter. Under these constraints, the
deterministic equation yields three homogeneous stationary
states for the values ofk1C1 under consideration. A Turing
instability occurs atk1C1 ) a0 ) 111.8975 for the stationary
state (xs, ys) ) (36.1498,37.5669).

This stationary state is stable for parameter values greater
than a0 and is unstable for parameter values less thana0. A
Turing structure grows out of the unstable stationary state for
decreasing values of the parameter. At the bifurcation point,

R0 ) -2η0ú0
*‚Dú(0,1) (34)

(∆η)0: (A0 - η0
2D)ú(1,0) ) -(A1 - 2η0η1D - â1)ú

(0,0) (35)

(∆η)1: (A0 - η0
2D)ú(1,1) ) 2η0Dú(1,0) + 2η1Dú(0,0)

- (A1 - 2η0η1D - â1)ú
(0,1) (36)

(∆η)2: (A0 - η0
2D)ú(1,2) ) 2η0Dú(1,1) + (D + R0)ú

(1,0)

+ 2η1Dú(0,1) + R1R
(0,0)

- (A1 - 2η0η1D - â1)ú
(0,2) (37)

â1 ) ú0
*‚A1ú0 (38)

η1 ) -ú0
* ‚[2η0Dú(1,0) - (A1 - â1)ú

(0,1)]/R0 (39)

R1 ) -ú0
* ‚[2η0Dú(1,1) - (A1 - 2η0η1D - â1)ú

(0,2)

+ (D + R0)ú
(1,0)] + η1R0/η0 (40)

¥RR′(η) ≈ -
ΦRR′

λ1(η)
(41)

ΦRR′ )
ú0

*‚B̃(η0)ú0
*

2
(ú0)R (ú0)R′ (42)

hRR′(r) ≈ -
ΦRR′

π ∫-∞

∞ cos(ηc + ∆η)r

R0(∆η)2 + εâ1

d(∆η)

≈ ΦRR′

(R0εâ1)
1/2

exp[-(εâ1/R0)
1/2|r|] cosη0r (43)

lcorr ) ( R0

εâ1
)1/2

) (12 λ1′′(ηc)

λ1(ηc) )1/2

(44)

C1 {\}
k1

k2
X, X + 2Y {\}

k3

k4
3Y, Y {\}

k5

k6
C2 (45)
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the critical wavenumber isη ) 231.57. The matricesA andB
are

We take the distance parameter to beε ) k1C1 - a0 and
compute the structure function¥(η) - C and correlation
functionh(r) for two values ofk1C1, one relatively far from the
bifurcation value, 114, and the other close to it, 112. We
compare the approximations, eqs 41 and 43, with the exact
results for both cases. The constants and vectors appearing in
the approximations areú0 ) (0.3624, -0.9320), ú0

* )
(-0.3066,-1.1922),ú(0,1) ) (-2.124× 10-3, 5.462× 10-4),
Φ11 ) 19.403,a0 ) -2.714× 10-5, â1 ) -3.626× 10-2. (To
compute the constantâ1, the first term of the expansion ofA in
the parameterε is needed. SinceA depends upon the stationary
state solution (xs, ys), which is a zero of a cubic polynomial,
we expandxs andys in ε and determine the first-order corrections
to the stationary state. These are used in the eq 46 to findA1.)

In Figure 1, we plot a component of the structure function,
¥(η) - C, for a parameter value near, but not in a perturbative
sense,ε ≈ 2, the bifurcation value. The correlation function,h
(r), for the same parameter value is plotted in Figure 2. We
compare each of these exact solutions with the approximations,
eqs 41 and 43, which are indicated by+ symbols. The
approximation correctly predicts the location of the maximum
of the structure function as well as its width. This is sufficient
to give an approximate correlation function, Figure 2, that agrees
quite well with the exact solution; the amplitude, period, and
decay rate are all correctly described. Even for this relatively
large distance from the Turing bifurcation, the correlation
function exhibits a prominent oscillatory structure with a
wavelength close to that of the Turing structure that occurs
above the bifurcation.

In general, the critical wavenumber for the inverse of the
deterministic eigenvalue 1/λ1, which determines the wavelength
of the approximation, and that for the structure function do not

agree away from the bifurcation point. The difference between
them is proportional toε. This accounts for the slight offset of
the two maxima in Figure 1. The effect of this discrepancy on
the correlation function is minimized by a short correlation
length for parameter values away from the bifurcation value.

Figures 3 and 4 show a component of the structure and
correlation function for a parameter value close to the bifurcation
value, ε ≈ 0.1. The correlation function exhibits a large
correlation length, which spans several oscillations. As expected,
the asymptotic approximations agree very well with the exact
solutions.

IV. Conclusion

In this paper, we have derived explicit expressions for the
stochastic potential and spatial correlation function (Gaussian
approximation) for reaction-diffusion systems based on a
master equation approach. These solutions are simple in
structure, making them feasible to compute for systems with
arbitrary numbers of species. For systems near Turing instabili-

Figure 1. Dependence of (¥ - C)11, marked along the ordinate as
(Xi-C)11, on the wavenumberη for a value ofk1C1 well below the
bifurcation value (ε ) 2.102). The solid line is the exact solution, eq
12, and the curve marked with+ is the approximation, eq 41.

A ) (-k2 - k3ys
2 -2k3xsys + 3k4ys

2

k3ys
2 2k3xsys - 3k4ys

2 - k5
) (46)

B )

(k1C1 + k2xs + k3xsys
2 + k4ys

3 -k3xsys
2 - k4ys

3

-k3xsys
2 - k4ys

3 k3xsys
2 + k4ys

3 + k5ys + k6C2
)

Figure 2. Dependence of the correlation functionh11 on the distance
r for the same parameter values as in Figure 1. The solid line denotes
the exact solution, eq 20, and the+ curve denotes the approximation,
eq 43.

Figure 3. Dependence of (¥ - C)11, marked along the ordinate as
(Xi-C)11, on the wavenumberη for a value of k1C1 close to the
bifurcation value (ε ) 0.1025). The solid and+ curves are exact and
approximate solutions as described in Figure 1.
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ties, we developed an approximate solution for the structure
functionh, from which equations for the potential and correla-
tion function were obtained. The approximate solution for the
correlation function is an exponentially damped sinusoidal
function (cosine in one-dimensional systems). The amplitude
is inversely proportional to the square root of the smallest
eigenvalue (of the deterministic system), the correlation length
is the reciprocal of the half width of the structure function, and
the wavelength is near that of the Turing structure. Our theory
shows that long-range structured correlations in systems below
Turing bifurcations prefigure the spatially ordered macroscopic
state that occurs above the bifurcation.

Our analysis also provides geometrical insight into fluctua-
tions. The WKB approximation of the probability density of
reaction-diffusion master equations reduces the leading order
behavior to a problem of classical mechanics. The Hamiltonian
of an associated system is expressed in terms of probabilities
of elementary reaction rates and jumps between mesoscopic
scale cells. In this approximation, the leading order term,
eikonal, is given by the integral of the Lagrangian along a
classical trajectory. Fluctuational trajectories are projections of
classical trajectories onto concentration space. The stationary
solution for the probability density of the master equation is
described by solutions on the unstable manifold of the homo-
geneous stationary state of the deterministic equation. From this
interpretation, most probable local fluctuations may be decom-
posed into unstable eigenvectors of the Jacobian matrix of
Hamilton’s equations.

Near the Turing bifurcation, higher order terms for the
stochastic potential may be obtained through normal form
transformations. These reduce the unstable manifold to that of
the linear approximation to arbitrarily high order. However, in
general, these transformations diverge as the bifurcation point
is approached. To capture correct scaling and the potential at
the bifurcation, the normal form for the Turing bifurcation point
of the Hamiltonian system should to be studied.
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Sciences, Engineering Program.

Appendix

A. General Solutions for the Stochastic Potential and
Correlation Function. In this Appendix, we find approximate
solutions to the multidimensional reaction-diffusion master
equation. We follow the method and notation of our previous
work on master equations.24,25 From the Hamiltonian eq 5,
Hamilton’s equations of motion forxqR andpqR ) ∂S/∂xqR are
given by

In these and the following expressions, we denote a change in
the value of a coordinate from that of the vectorq by a
subscripted variable; all other coordinate values are equal to
those ofq. The deterministic equation is obtained from eq 47
with p ) 0. The unstable manifold of the fixed point (xqR, pqR)
) (cR,0) determines the time-invariant distribution through eqs
7 and 8.

For points close to the fixed point, the above equations may
be approximated by linearizing about the stationary state:

whereuqR ) xqR - cR andVqR ) pqR - 0 are small deviations,
and

Figure 4. Dependence of the correlation functionh11 on the distance
r for the same parameter values as in Figure 3. The solid line denotes
the exact solution, and the+ curve denotes the approximation as
described in Figure 2.

dxqR

dt
) ∂H

∂pqR

) ∑
F

wF(xq)νFR exp(∑
â

pqâνFâ)

+
D̃R

2
∑
i)1

d

{xqR [-exp(-pqR + p(qi-1)R)

- exp(-pqR + p(qi+1)R)]

+ x(qi-1)R exp(-p(qi-1)R + pqR)

+ x(qi+1)R exp(-p(qi+1)R + pqR)} (47)

dpqR

dt
) - ∂H

∂xqR

) - ∑
F

∂wF(xq)

∂xrR

[exp(∑
â

pqâνFâ) - 1]

-
D̃R

2
∑
i)1

d

[-exp(-pqR + p(qi-1)R) - 1

+ exp(-pqR + p(qi+1)R) - 1] (48)

duqR

dt
) ∑

â

ARâuqâ + ∑
â

BRâVqâ

+
D̃R

2
∑

i

(-2uqR + u(qi-1)R + u(qi-1)R)

+ D̃RcR ∑
i

(2VqR - V(qi-1)R - V(qi+1)R) (49)

dVqR

dt
) -∑

â

ARâ
T Vqâ -

D̃R

2
∑

i

(-2VqR + V(qi-1)R + V(qi+1)R)

(50)

ARâ ) ∑
F

∂wF(cs)

∂xâ

νFR

BRâ ) ∑
F

wF(cs)νFRνFâ (51)
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The matrixA is the Jacobian for the well-stirred deterministic
system, andB is the probability diffusion matrix of the Fokker-
Planck approximation of the master equation for the homoge-
neous (well-stirred) system.

We note that in the limit of a continuous system, the above
equations become

whereu ) u(r, t) and V ) V(r, t) are m-dimensional vectors.
We may write the equations of motion for the deviations,

eqs 49 and 50, more compactly in matrix form

whereu ) uqR, andV ) VqR, aremnd vectors.M1 andM1 are
mnd × mnd matrices, which for periodic boundary conditions
are

where we have written the part involving the matrixD̃ for only
the first two spatial coordinates. Similar terms appear for each
coordinate. We identifyM1 as the Jacobian matrix of the
deterministic system andM2 as the probability diffusion matrix.

The Hamiltonian for this system isH(2) ) V‚M1u + 1/2V‚
M2V, where the superscript 2 denotes that only terms to second-
order are kept. We approximate the stochastic potential near
the stationary solution using the corresponding Lagrangian

Assumingu, V starts from the stationary state (0, 0), we obtain
S(u) ) (1/2)u‚V, whereu and V are solutions to eqs 52 or 53.

The unstable manifold of the stationary state determines the
time-invariant density. In this linear approximation, we ap-
proximate the unstable manifold by eigenvectors in the unstable
space of the matrix in eq 53. We denote the eigenvectors
corresponding to eigenvaluesλl, l ) 1, ..., mnd, with positive
real parts as (w(l), V(l)).

A deviation from the stationary state can be expressed in terms
of the eigenvectorsw(l), and from eq 55 the stochastic potential
can be determined. LetWandV denote matrices whose columns
are the unstable eigenvectorsw(l) andV(l), respectively. Then, a
deviation can be writtenu ) Wy, V ) Vy, for some vectory.
Then the stochastic potential is

A simplification of the matricesV and W is possible by
factoring eigenvector solutions into a spatial and a concentration
or momentum part:w(l) ) Fq

(l)bR
(l), V(l) ) Fq

(l)dR
(l). We note thatFq

) e2πikq/n satisfies the eigenvalue equation for one coordinate
Fq - (1/2)Fq-1 - (1/2)Fq+1 ) (1 - cos 2πk/n) Fq, which appears
in eqs 49 and 50. For ad-dimensional system, we introduce a
different notation and take the spatial function as

wherek andq arem-dimensional vectors, withki ) 1 - n/2,
...., n/2 andqj ) 1, ...,n. We have normalized these functions
so that∑qQqkQh qm ) δkm. Substituting this form into eq 56
results in the following eigenvalue equation for matricesEk and
Fk whose columns are comprised of the solutionsbR

(k) anddR
(k),

respectively:

where

The matrix Λk is diagonal and contains the eigenvalues of
-(Ãk)T (i.e., the eigenvalues of the deterministic system with
reversed sign). Thus, the stochastic potential for the discrete
cell problem is determined by the solutions to matrix eigenvalue
equations.

In the limit of infinitely many cells (for finite or infiniteL),
we have the corresponding problem with the matricesÃk and
B̃k replaced by

For finite L, the Fourier variableηi takes on discrete values,
2πki/L, ki ) 0, 1, ..., while for L f ∞, the variableηi is
continuous. In both cases, the matricesÃ and B̃ only depend
upon the magnitudeη and therefore, the eigenvalues and
eigenvectors, eq 59, also only depend on the magnitudeη.

We factor the matricesW (respV) into a spatial matrixR
and a concentration matrixE (resp momentum matrixF):

where

and

In eq 63,Im denotes them × m-dimensional unit matrix. The
vectorq labels the rows andk the columns, in which for each
value of q and k there is anm-dimensional diagonal block
consisting of elementQqk. From the orthonormality ofQqk, the
matrixR is unitary,RRhT ) 1. From eq 57, the stochastic potential
is 1/2RFE-1RhT.

∂

∂t (uV )) (A + D∇2 B - 2DC∇2

0 -AT - D∇2)(uV ) (52)

d
dt (uV )) (M1 M2

0 -M1
T)(uV ) (53)

M1 ) (A - D̃
1
2
D̃ 0

1
2
D̃ A - D̃ l

0 l l
),

M2 ) (B + 2D̃C -D̃C 0
-D̃C B + 2D̃C l
0 l l ) (54)

dS
dt

) V‚ŭ - H(2)

) 1
2

d
dt

(u‚V) (55)

(M1 M2

0 -M1
T)(w(l)

V(l) )) λl (w(l)

V(l) ) (56)

S) 1
2
u ‚ V ) 1

2
u ‚ VW-1u (57)

Qqk ) 1

nd/2
e2πik‚q/n (58)

(Ãk B̃k

0 -(Ãk)
T)(Ek

Fk ) ) (EkΛk

FkΛk ) (59)

Ãk ) A - µkD̃, B̃k ) B + 2µkD̃C

µk ) ∑
i)1

d (1 - cos
2πki

n ) (60)

Ã(η) ) A - η2D, B̃(η) ) B + 2η2DC

η2 ) ∑
i)1

d

ηi
2 (61)

W ) RE, V ) RF (62)

R ) (ImQqk) (63)

E ) diag(Ek), F ) diag(Fk) (64)
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Using the above factorization, we may express the stochastic
potential in a simple form using the Fourier representation of a
periodic function. We write a deviation from the stationary state
as a Fourier series

where

Then, using the above factorization ofV and W, eqs 62-64,
and the structure of R, we obtain the following expression for
the potential [for finite lengthL and (even) number of cellsn]:

where ¥k ) EkFk
-1. The matrix¥k satisfies a fluctuation-

dissipation relation

which may be shown by solving each of the twom× m matrix
equations in eq 59 forΛk and equating the resulting expressions.
The formula forn f ∞ and finiteL is easily obtained from this
equation and has the same form. In this case, the deviation is a
function of a continuous variablef(r) andakâ denotes the Fourier
transform off. Also, the matrix¥k is replaced by¥(η) ) E(η)
F-1(η), whereE(η) andF(η) are solutions in the unstable space
of the matrix eq 59 (withÃ and B̃ defined in eq 61). Letting
the system length increase,L f ∞, we have

where the integration is over the whole spaceRd, ηi ) 2πki/L,
ri ) Lqi/n andgR is the Fourier transform offR:

In making the transition from finite to infinite length, we have
written the single sum overη, in the discrete, finiteL problem,
as a double sum overη andη′ and inserted a Kronecker delta
δηη′; in the large system size limit, this double sum can be
converted to a double integral and the Kronecker delta becomes
a Dirac delta function:δηη′ ≈ (2π/L)δ(η - η′). The above result
for the stochastic potential gives the following expression for
the approximate probability density in a large system:

The spatial correlation function is related to the potential
(1/2)RFE-1RhT by 〈uqRuq′R′〉 ) (∆V)-1(REF-1RhT)qR,q′R′. Using the
structure ofE, F, andR, we obtain the correlation function for
a finite length system composed of a finite number of cells:

For increasing numbers of cells in a finite length system, the
same relation holds for¥(η), in which Ãk andB̃k are replaced
by those forÃ(η) andB̃(η). For largeη, the matricesÃ(η) and
B̃(η) become-η2D and 2η2DC, respectively. The solution for
¥k in this limit is C. We separate this divergent part from the
sum and write the correlation function as

Letting the number of cells and system length become large,n
f ∞, L f ∞, we obtain the continuous version:

The delta function term originates from a Poissonian distribution
that is due to fluctuations caused by diffusion. The second term,
h, the structure function, is due to coupling between reaction
and diffusion, which causes long-range structure in spatial
correlations. Using the property that the matrix¥(η) is an even
function ofη, eq 68, we may limit integration to non-negative
values ofηi, i ) 1, ...,d:

B. Approximations for Systems Close to Turing Bifurca-
tions. The correlation function and stochastic potential for one-
dimensional systems has been approximated in section III.A
using the leading order expression for the structure function¥,
eq 41. This expression for¥ may also be used in approximations
for higher dimensional systems, since¥(η) only depends on
the magnitudeη.

We concentrate on three-dimensional systems, because of
their physical importance. First, the multiple integral in eq 74
can be reduced to a single integral by converting to spherical
coordinates. Integrating over the angles yields

where we denote the magnituder ) |r - r ′|, andη ‚ (r - r ′)
) ηr cosθ. Then using the approximation for¥(η), eq 41, we
obtain the explicit solution

whereR0, andεâ1, andΦRR′ are determined by eqs 34, 38, and
42 of section III.A. We find that the amplitude and correlation
length are the same as for a one-dimensional system. In
particular, the amplitude diverges as the inverse of the square
root of the largest eigenvalue (of the deterministic system) and
the correlation length diverges as the inverse of the half width
of the structure function.
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