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Spatial Correlations near Turing Instabilities: Criteria for Wavenumber Selection
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We analyze the probability distribution and spatial correlations around a stationary state of a generatreaction
diffusion system. The stochastic description is based on a multivariate master equation. We use a WKB
expansion of the probability density and determine the leading term, the stochastic potential, to second order
in deviations from a homogeneous stationary state. For a system below, but near, a Turing instability, the
spatial correlations become long range and display a macroscopic structure that will emerge after the bifurcation.
We derive explicit expressions for both the probability density and the correlation function. For systems
close to the instability, the correlation function is approximately an exponentially damped cosine function.
We derive explicit expression for the correlation length and the amplitude of the correlation function; they
are inversely proportional to the square root of the largest eigenvalue of the deterministic system. Our approach
differs from earlier work in that systems with many chemical species are treated, asymptotic approximations
are derived, correlations are given a geometrical picture in terms of eigenvectors of the Jacobian of an associated
Hamiltonian system, and higher order terms in the stochastic potential are possible to obtain analytically
(which we do not pursue). Results of the theoretical analysis are applied to the Sel’kov model. Exact and
approximate solutions at lowest order agree well.

I. Introduction continuous flow unstirred reactors have been developed where

A phenomenon of great interest, from both an historical and '¢action takes place in a thin layer of gel, in addition, the
scientific standpoint, is the generation of stationary spatial Mopility of the act|vz11t70r is lowered by interaction with a low-
patterns in nonlinear chemical systems through the interplay of mobility cgmpound“. Expenmentall wavelengths are in the
reaction and diffusion. First proposed by Turihthese struc- ~ 'an9e 10°—1 cm. Recent calculations suggest that Tgrlng
tures are produced by a mechanism that is independent of theSrUctures may aiso exist on a mesoscopic scale; Dm.
details of the kinetic system and geometric parameters. Instead, Theoretical studies of patterns and instabilities in spatially
more general considerations allow the spontaneous developmenéxtended systems have treated both purely deterministic and
of patterns from spatially uniform stationary stat&ince their stochastic systems. Work on deterministic systems has shown
introduction, they have been used to explain various biological how nonlinear interactions between linearly unstable eigenmodes
patterns: subcellular metabolic function, cellular differentiation, Produce various patterns beyond the bifurcaéiéA?Even low
and morphogenesisThese patterns arise as a system evolves (spatial) dimension systems exhibit complex bifurcation dia-
from a homogeneous stable state through a marginally stablegrams. For example, in two dimensions, the Turing bifurcation
state. In the pretransitional regime, fluctuations play an important may show the following sequence: a stable hexagonal structure
role by exploring nearby states. We study the probability density appears subcritically; the primary bifurcation to a striped
and correlations in systems close to, but before, Turing Structure appears supercritically, but is unstable at first; the
instabilities and show that as the instability point is approached stripes become stable for higher parameter values and coexist
correlations become very |arge in amp]itude and deve|0p aWIth the hexagonal structure over an interval of parameter
macroscopic spatial structure with the same wavelength as thatvalueg Stochastic treatments generally approach the problem
of the pattern which develops beyond the instability. This ©n & mesoscopic level using a multivariate master equation. A
enhancement of structured fluctuations provides a method for result of the complexity of this equation, most studies have
using fluctuations as predictors of Turing instabilities and concentrated on nonpattern-forming bifurcations, specifically
macroscopic patterns in pre-Turing bifurcation systems. homogeneous cusp and Hopf bifurcations. Cusp bifurcations

Turing instabilities may arise in systems where there is some show “nonclassical” behavior of correlations in low spatial
autocatalysis (positive feedback). Two variable systems gener-dimensional systemsd( < 4).%12 In the case of a Hopf
ally have an identifiable activator and inhibitor (of the auto- bifurcation, macroscopic oscillations may be destroyed by
catalytic reaction) and may be classified as either activation ~fluctuations in low dimensionald(< 3) systems314
inhibition or activation-depletion, depending upon the signs Previous work on the subject of this paper, fluctuations in
of the linear evolution matrix. Diffusion tends to reestablish a systems close to the Turing instability, has yielded an explicit
homogeneous state. For the instability to arise, the diffusion formula for the correlation function for two-variable systems
coefficient of the inhibitor has to exceed that of the activator in one spatial dimensiot?. This work truncates the moment
by an amount that depends upon the kinetics, though for mostequations and results in classical exponents for the divergence
realistic models the difference must be at least an order of of the correlation length and variances within cells. Our work
magnitude. This requirement has, until recently, prohibited extends and simplifies these results to arbitrary numbers of
experimental realization. To eliminate hydrodynamic currents, species and dimensions. We use a different formalism, the
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stochastic potentidf~1° which allows a geometrical interpreta-  the kinetic coefficient of theth reaction is,. Nearest neighbors
tion of the probability density in terms of an unstable manifold of cell g are denoteé. The jump frequenc{, of species is
of an associated Hamiltonian system. These equations alsorelated to Fick’s diffusion coefficient by
permit easy numerical evaluation of the global probability .
density. In this paper, we concentrate on local aspects of the & 2
stochastic potential. We approximate the Hamiltonian to second 2d
order in deviations from a homogeneous stationary state. This
leads to a second-order approximation for the stochastic wherel = L/nis the characteristic length of a céfl= AV.
potential, the Gaussian approximation, which may be determined ~Several conditions must be met for eq 1 to describe correctly
from matrix eigenvalue problems. Higher-order terms may be reaction-diffusion systems? Besides the Markovian assump-
found through normal form transformatioffsyve do not pursue  tion, local equilibrium must prevail, which requires a large
these here. number of molecules per cell. Also, the size of a cell must be
In the following sections, we present equations and summarize Small enough (less than the correlation length) that homogeneity
results; details of calculations are relegated to the Appendix. holds and yet not so small that microscopic aspects, such as

®3)

%Da

In section 1I.A, we summarize the multivariate master equation deviations from the MaxwettBoltzmann velocity distribution,

treatment of reactiondiffusion systems and introduce the

need to be incorporated. Typically, cell dimensions should be

stochastic potential. We formulate a Hamiltonian system, the of the order of the reactive mean free path the distance a particle
solution of which determines paths that most probable fluctua- travels before it undergoes a reactive collision.

tions follow. The integral of the associated Lagrangian along

We considerAV as a large parameter, since a large number

these trajectories gives the stochastic potential. In section I1.B, of particles are contained within a cell, and wrieo leading
we discuss the solutions to the Hamiltonian system linearized order as an asymptotic WKB forf: 19
about a stationary state. This leads to the Gaussian approxima-

tion of the stochastic potential. The correlation function is treated

in section II.C. In section Ill.A, we give an approximation for

P({Xqod i) = K{{ Xge} 1) €Xp(AV S({Xo} 1)) (4)

spatial correlations in systems close to Turing instabilities; in Wheréxga = Xqa/AV. In the following, we are concerned with
section I11.B, we illustrate our exact and approximate equations S the stochastic potential (also referred to as the nonequilibrium
by numerical examples on the Selkov model. Section Iv Potential), and neglect the prefactér Substituting eq 4 in eq

contains some concluding remarks.

Il. Reaction—Diffusion Master Equation

A. General Formulation and WKB Approximation. In the
following, we give a brief outline of the master equation
formulation for a general reactierdiffusion systent> We
considerm chemically active species in a volumé= L% in
d-dimensional space. The lengthalong each spatial axis is
divided inton segments, by which cells of volunzev = Vv/rd
are constructed. The cells are labeled by a vegter (qy, ...,
dd), G = 1, ...,n, and periodic boundary conditions are imposed
On+1 = 0. We take as variables the numbers of parti¢Eg.}

within cells and assume that they define a Markov process.
These random variables change as a result of chemical reactions,
which are modeled as jump Markov processes, and diffusion,

which is modeled as a random walk between adjacent €ells.

This leads to a multivariate master equation for the probability

distribution P({ Xqa} ,1):

P
o ZZ[WP(Xq =V, Xg) PEXge = Vo)
— W, (Xq— Xq + v,)P]

+ZD—

~d D [(Xge + D P Ko 1 Xgiage = 1)
o q,a

_ anp]

where the transition probability per unit time for thid reaction,
W,, is

1)

(X40)!
— 1- (11_’;)& S —

W, (Xq = Xq+v,) = KAV 27 ] -
a (Xq(x - Vpa)!

The stoichiometric coefficient of, in the pth chemical reaction
iS v,q; the order of thepth reaction with respect &, iS V,q;

)

1, we obtain to leading order a Hamiltedacobi type of
equation for the stochastic potential
aS

- = ZZW}O(XQ)~ eX{{; 88_;%/3) —
27 qZ a \exp( Paa
e

where

1] +

]
8X(q+a)0L

(%)

W, (Xq— Xq +7,)
AV

W, (Xg) = (6)
Equation 5 is the HamiltonJacobi equation for an associated
classical mechanical system with Hamiltoniein Hamilton's
equations of motion for the system with this Hamiltonian are
given in the Appendix (eqs 47 and 48). These equations
determine trajectories inn2rf-dimensional phase space, whose
concentration and momenta atg, and pqq, respectively. The
stochastic potential satisfies the differential equation

ds

G = L 06 7)

along any trajectory of eqs 47 and 48, where the Lagrangian
corresponding to the Hamiltonias is

dxqa

88+
= Pgo —/—
£ dt

at  §5 0%y, dt

0S Mo

L —H

(8)

Equation 7 may be integrated along with Hamilton’s equations
to give the value of the stochastic potential along any classical
trajectory. This holds for both stationary and time-dependent
densities.
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We are concerned with stationary distributions, for which the
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wherey (=27k/L) is a continuous variabl&~(x) is the matrix

associated classical trajectories lie on the unstable manifold ofinverse of=(y), andg(y) is the Fourier transform df(x):

the stationary statége = Xs, Pge = 0).2% On this (Lagrangian)

manifold, the energy is zero. The classical trajectories, when
projected down onto concentration space, determine most

probable fluctuational paths (the characteristiésfor small

601) = 5= &"1(r) (14)

deviations from the stationary state, these trajectories may beNOW We have=(i7) = E(7)F*(;7) and columns of the matrices

approximated by solutions to Hamilton’s equations linearized

E andF are comprised of eigenvectors in the unstable space of

about the stationary state. The unstable eigenvectors of theth® matrix eq 59 withA() andB(y), eq 61, replacing and
Jacobian matrix then determine the stationary density through B USing the property tha is an even function of (see eq

eq 7. Details of this solution are supplied in the Appendix. In

the following, we concentrate on the structure of the solutions

for the probability density and correlation function.
B. Gaussian Approximation of the Stochastic Potential
near a Stationary State.In this and the following sections,

17), we may write the probability density as
PIfl = exp(-27 [ otn)-E()a(n) ) (15)

The local density is determined by the structur&ot(y) as

we consider systems in one spatial dimension. The generala function ofz;. In section IIl.A, we show that for a system

d-dimensional problem is treated in the Appendix. We follow
the notation and method as developed in our earlier p&péts.

We write an arbitrary periodic deviation from the stationary
state,ur, = Xqa — Ca, @S a discrete Fourier series

n/2 ]
uqa — fqa — akanrnkq/n (9)
k=TI=n/2
where
1.0 )
A =~ fqae—kaq/n (10)
nq:

is the discrete Fourier transform &f,. For convenience, we
take the number of cell: to be even. This allows the
independent Fourier terms to be expresseld &s—"/, +1, ...,

"/,. Using the results in the Appendix (for the matrices V and
W), we may write the stochastic potential for the above deviation
(under periodic boundary conditions) as

n n/2 L
S=- Z B (B Do A (11)
2=
where
=z =EF " (12)

The matrice€x andF, arem x m-dimensional matrices, whose

close to a Turing instabilityZ exhibits a maximum for close

to the Turing wavenumber. This enhanced probability of a
structured fluctuation may be measured by the correlation
function, which we discuss next.

C. Correlation Function. The spatial correlation function
MigUqe D is related to the matrixVWt of the quadratic
approximation of the stochastic potential, eq 57, through
(n/L)(VW1)~L, Using the factorization o¥/ andW, eqs 62-

64, we obtain the following expression for a finite (even) number
of cellsn and lengthL:

n/2

w, u, . O0=L"1

qo-qo’ (16)
k=T—

(': k) e2:ri k(g—q)/n
Ziaa
n/2

This result is valid for general reaction schemes that are not
too close to points of instability. We see that the correlation
function is essentially the discrete Fourier transform of the
matrix Zy. Hence, the correlation range and structure is
determined by this matrix as a function laf
Using eq 59, we find that for each,
fluctuation—dissipation relation

=k satisfies a

=z + =2 A +B,=0 17)
For a large number of cells arid> L, the matricesh, and By
tend to—#?D and 2;°DC, respectively, where = 27k/L and
C is the diagonal matrix of stationary state concentrations [see
eq 61]. From this relation, we have the property tBatends
to C for k — . The contribution of a constant matrto the

columns are comprised of eigenvectors in the unstable spacesym in eq 16 diverges with. We separate this part from the

of the matrix in eq 59 of the Appendix. The subschputenotes

sum and write the correlations as

the wavenumber used in the eigenvalue problem. As discussed

in the next section, the matri€ satisfies a fluctuation
dissipation relation, from which the solution may also be found.

On letting the number of cells tend to infinity, we obtain a
similar formula for the potential, eq 11, but with and F
determined by eq 61. In this limit, the sum &nextends to
infinity and the coefficients are obtained from the Fourier
transform of a continuous vector-valued functidfr) on
(—=L/2, L/2), wherer = gL/nandg = 1 — n/2...n/2

_ 12

—27ikr/
qo =1 pfane N dr

Using the previous result for infinitely many cells and taking
the infinite system size limiL — o, we obtain

SURE SO O OLTICE)

mlqotuq’on’Dz Lil[nctm’aqq + (Eo)oux']
n2—1 27tk
+- Z (Ek - C)(w.’ COS— (q - q')
L & n

1 p— U
+ [ (B~ O OST (@~ ) (18)

The first term of this expression derives from a Poissonian
distribution and is due to fluctuations caused by diffusion. The
rest of the expression involves long-range correlations and is
due to the coupling of reaction and diffusion. The correlation
length is determined by the dependence of the prefactor of the
cosine termZx — C, ony. In the next section, we approximate
this (structure) function for systems close to a Turing instability.

In the limit of infinitely many cells, the term with a Kronecker
delta becomesg, 040 (r — r'), whered() denotes the Dirac
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delta function. Letting the system size incredse; o, we may In order to proceed further with this approximationzfeq
write the sum ovek as an integral oven (=27k/L): 24, we need to determine how the eigenvalue closest to zero,
A1(n), depends om and on the distance to the bifurcation. As
[, (r) Uy ()= €04 O(r — 1) + hgee(r — 1) (19) a function ofy, this eigenvalue exhibits a maximum at a critical
point, which depends upon the distance to the bifurcation. We
where denote this critical point ag.(¢), wheree is a (small) expansion

1 oo parameter that is zero at the bifurcation. In the vicinity of this
hoee(r — 1) = J—Ij; (E(m) — C)y COSH(r — r') dp (20) point, the eigenvalue is a quadratic functionnof- 7c(e). We
consider both the distance to the bifurcation and the distance

The matrixZ() satisfies a fluctuationdissipation relation: ~ to the critical point as small and take as expansion parameters
eq 17 with the matricedy and B, and the Fourier variabl € andAn = 7 — 1¢(€). We expand the critical point i, 77¢(¢)
replaced byA(7), B(y), [eq 61] andy, respectively. We note = 7o + ena + O(e?), and write the eigenvalue as
from eq 17 and the definitions of the matricag;) and B(r)
that the matrixZ(») is an even function ofy. The Fourier Ja(m) = (&)l — nLe)]* + Ble)

transform of eq 19 is simply the matri:
) ) = (0t + €0))(An)* + €, + O(€?) (27)
o U (T A — 1) = E () (1)
We also expand the eigenvector corresponding,tend the
The structure functiorEq.(y) determines the correlation ~Matrix A:
amplitude and length through a cosine transform, eq 20. In the ' o
next section, we study the dependence of these properties or(e,An) = ZZe'(An)JQ("') (28)
the distance to the bifurcation. We show that the maximum of i=0j=
E(n), which is near the critical wavenumber, increases without
bound as the bifurcation point is approached. Ale, An) = Ale) — n°D = éiAi —5°D
=
Ill. Approximations and Numerical Results near a

Turing Instability = EiAi —(po+ Ay +en,+...¥ D (29)

A. Spatial Correlations near a Turing Instability. As =
shown in section 11.C, the matrix determines the structure of
the correlation function. The solution to the fluctuation  Putting these expressions into the eigenvalue problem, eq 25,
dissipation relation foE(»), egqs 17 and 68, may be expressed and collecting terms with equal powers of we obtain an
in terms of a matriXxJ(») that diagonalizes the Jacobian of the hierarchy of equations to be solved for the coefficients. Then,
deterministic system\(y7), egs 60 and 61, and the eigenvalues for each power o€, we collect terms with equal powers Af.
of A(), denotedii(n), i = 1, ...,m. Straightforward calculations  For <%, we obtain
give the general solution as

- A% (A — D) £ =0 30
Z() = ~U() Her) V() () Bo =1 D)6 (30)
Hy(7) ={U™07) BODIU' )] 1/in) + 40) - (22) (An)"s (A — D) £ = 27DLC? (31)
where
(An)*: (A = 17g'D) £ = 206D + (D + ag) £

[AG) U0, = (A~ "DV = 401) Uyn) (23) (32)
The matrixA is the Jacobian matrix for the homogeneous (well- ~ The solution to eq 30 is the eigenvector corresponding to
stirred) deterministic system. eigenvalue zero (at the bifurcation poirt= 0); we denote

For a system that is close to a Turing instability, one of the this solution aso. We will also need the left eigenvector of
eigenvalues ofA(y) tends to zero as the bifurcation point is the matrix in eq 30, which we denofg.
approached. In this case, the dominant contributior(g) We may normalize the eigenvectors so tiat: &y = 1.
comes from the term that contains the reciprocal of the near- Then, the solvability conditici for egs 31 and 32 may be stated

zero eigenvalue, which we denote Keeping only this term 55 the orthogonality of the right-hand sides of these equations
in eq 22 yields the approximation to &, For eq 31, this condition is

&*(m)*B() £(1)

Eea(m) ~ 2,00 Ealm) Eue(m) (24) &yDE,=0 (33)
where the right and left eigenvectors Afiy) corresponding to ~ As there are no adjustable parameters, this equation should
the eigenvalué, () are denoted () and* (i), respectively: always be true for any system undergoing a Turing bifurcation.

. From the previous normalization of the eigenvectors, we see

A(n) &) = A4(n) E(n) (25) that the diffusion coefficients must not all be the same value.
In two-species systems, the coefficients of the activator and

(A)TC*(n) =) T*(n) (26) inhibitor typically differ by an order of magnitude. Verification

of eq 33 may be obtained by differentiating the full eigenvalue
We normalize these eigenvectors such itat ¢ = 1. equation (withy dependence) with respect#o(ate = 0) and
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evaluating the resulting derivative gt= 7o. As the solvability
condition is always fulfilled, eq 31 may be solved f#-1. To
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[We note that this expression may also be used in eq 13 to
approximate the stochastic potential near a Turing instability.]

make the solution unique, it is necessary to add a (any) Usingl: (7) ~ oo (An)? + €81, we have the values at which

normalization condition, e.g;b. & = 0 or 1.

The solvability condition for eq 32 fot©2 determines the
parameteiy:

0t = — 275 DT (34)

To determine the other coefficients of interest, 1, andn,
we expand the ordef equation in powers olz. Straightfor-
ward calculations give the expressions

(An)% (Ao — 1y D)) = —(A, — 25gy,D — BYE®Y (35)
(Anp)t: (A, — n2D)EMY = 25, DT + 29, DO
— (Ay — 29gn,D — ﬁ1)§(0’1) (36)

(An)%: (Ao — 1y°D)CH? = 27,DCHP + (D + )¢
+ 27,06V + 0,09
— (A, — 2D — ﬁl)g(o,z) (37)

The solvability conditions for these equations (fg+?, ¢@1),
and 12) determine the coefficients arii¥) in succession:

B = EorAd, (38)
n= _CE)'[ZWODC(LO) - (Al - ﬁl)é(o'l)]/ao (39)
o, = — & [27,DE™MY = (A, — 2D — B)E*?

+ (D + ax)t™ + nyay/n, (40)

Each vector{@) is uniquely determined by imposing a
normalization condition, e.gG,-¢@) = 0.

The adjoint eigenvectof* (e, An), which is needed in the
approximation of2, eq 24, may also be approximated near a
Turing instability using an expansion in bothand Az (cf eq

Eq has half its maximum value at = 1o £ (e81/ag)? i.e.,

the half width ofZ is (ef1/00)2 We recognize thaE has a
resonant line shape as in classical radiation théofe integral

in eq 20 for the non-Poissonian part of the correlation function
is

D fw cosfy, + An)r
T o’~0(A’7)2 +eB;

hye(r) ~ — d(An)

aa’

™ 12
~ 1/2
(agef3y)

exp[—(ef/a) " Ir|] cosnr (43)

In this approximation, the correlation function is an exponen-
tially damped cosine. The wavelength at leading order is that
of the eigenvector corresponding to the maximum eigenvalue
of the deterministic equations. The amplitude of the correlation
function is inversely proportional to the square root of the
maximum eigenvalue of the deterministic equations. We also
obtain the correlation length as inversely proportional to the
width of E,¢ and to the square root of the maximum eigenvalue:

I ) R PP

corr eﬁl - 2 ;Ll(nc)
where primes denote derivatives with respectntoAs the
bifurcation point is approached, the correlation length and the
correlation function diverge with a classical square root
behavior. (This classical exponent is due to the Gaussian

approximation and is not valid for systems very close to the
bifurcation point.)

We note that the wavelength and correlation length (decay
rate) are described by purely deterministic quantities: the critical
wavenumbenyo; largest eigenvaluef; [i.e., maximum ofi;

(m)]; the second derivative ofj [with respect toy], ao. The
only term containing explicit stochastic influencesbig, which
determines the amplitude of the correlation function.

B. Numerical Results.To illustrate our theoretical results,
we carry out calculations for a two-variable model, the Selkov
model?® The mechanism consists of the following chemical

(44)

28). Substituting this power series into the eigenvalue equation reactions

and collecting like power terms, we arrive at a hierarchy of
equations fo* (), which are the above equations, but with
replaced byA(T). The solvability conditions for these equations
are the same as those above and hence are satisfied®hce
are determined.

We may approximate the correlation function, eq 19, for

& Ik it
Ci=X, X+2Y=23Y, Y<=C, (45)

The concentrations of the specieg &d G, denoted theC;
andC; same, are kept constant, while the concentrations of the

systems close to a Turing instability, using the above expansions.two intermediates, denotedandy, are allowed to vary. We

Retaining only the dominant terms, we obtain the following
expression foEyq (1)

oo’

=)~ — 41
aoe (17) ) (41)
where the constand,y is
C*'B C*
q)aa’ = # (Co)a (Co)a' (42)

use the following set of parameter valuels; = 1.16; ks =
0.0016;ks = 0.00022ks = 2; ksC, = 5.17, and také;C; as an
externally controllable parameter. Under these constraints, the
deterministic equation yields three homogeneous stationary
states for the values df,C; under consideration. A Turing
instability occurs at;C; = ag = 111.8975 for the stationary
state k&, Ys) = (36.1498,37.5669).

This stationary state is stable for parameter values greater
thanap and is unstable for parameter values less thanA
Turing structure grows out of the unstable stationary state for
decreasing values of the parameter. At the bifurcation point,
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Figure 1. Dependence off — C);;, marked along the ordinate as . . . .

(X?—C)ll on t%e wavenumEl(Jey fO)I'llé. value ofklclgwell below the Figure 2. Dependence of the correlation functibn on the distance

bifurcation value ¢ = 2.102). The solid line is the exact solution, eq ' for the same parameter values as in Figure 1. The solid line denotes

12, and the curve marked with is the approximation, eq 41 ' the exact solution, eq 20, and thecurve denotes the approximation,

' ' ' eq 43.
the critical wavenumber ig = 231.57. The matrice8 andB
are

8000 T

5000

_k2 - k3y52 _2k3xsys + 3k4y32

A= (46)
k3y52 2k3 s 3k4 52 - k5)

4000
B=

klcl + kzxs + k3xsy52 + I(4 53 _kSXJSZ - k4ys3 )
_kBXSYSZ - k4y33 k3xsy52 + k4y53 + ksys + k6C2

3000

(i1

2000
We take the distance parameter to de= kiC; — ag and

compute the structure functioB(y) — C and correlation
functionh(r) for two values ofk;C;, one relatively far from the 1000
bifurcation value, 114, and the other close to it, 112. We
compare the approximations, eqs 41 and 43, with the exact g . .
results for both cases. The constants and vectors appearing in ~ 1%° 200 ota 250 800
the approximations arel, = (0.3624, —0.9320), ;; =

Figure 3. Dependence off — C)1;, marked along the ordinate as

(—0.3066,—1.1922),;01 = (—2.124 x 1073, 5.462x 1074, (Xi-C)11, on the wavenumben for a value ofkC; close to the
®;;=19.403,80= —2.714x 1075, 1 = —3.626x 1072 (To bifurcation value ¢ = 0.1025). The solid and- curves are exact and
compute the constag, the first term of the expansion #fin approximate solutions as described in Figure 1.

the parametet is needed. SincA depends upon the stationary

state solutionxs, ys), Which is a zero of a cubic polynomial, —agree away from the bifurcation point. The difference between

we expands andys in € and determine the first-order corrections them is proportional te. This accounts for the slight offset of

to the Stationary state. These are used in the eq 46 tonJ!r)d the two maxima in Figure 1. The effect of this discrepancy on
In Figure 1, we plot a component of the structure function, the correlation function is minimized by a short correlation

Z(n) — C, for a parameter value near, but not in a perturbative length for parameter values away from the bifurcation value.

sense¢ ~ 2, the bifurcation value. The correlation functidn, Figures 3 and 4 show a component of the structure and

(r), for the same parameter value is plotted in Figure 2. We correlation function for a parameter value close to the bifurcation

compare each of these exact solutions with the approximations,value, ¢ ~ 0.1. The correlation function exhibits a large

egs 41 and 43, which are indicated By symbols. The correlation length, which spans several oscillations. As expected

approximation correctly predicts the location of the maximum the asymptotic approximations agree very well with the exact

of the structure function as well as its width. This is sufficient solutions.

to give an approximate correlation function, Figure 2, that agrees

quite well with the exact solution; the amplitude, period, and ]

decay rate are all correctly described. Even for this relatively V- Conclusion

large distance from the Turing bifurcation, the correlation

function exhibits a prominent oscillatory structure with a In this paper, we have derived explicit expressions for the

wavelength close to that of the Turing structure that occurs stochastic potential and spatial correlation function (Gaussian

above the bifurcation. approximation) for reactiondiffusion systems based on a
In general, the critical wavenumber for the inverse of the master equation approach. These solutions are simple in

deterministic eigenvalue Ay, which determines the wavelength  structure, making them feasible to compute for systems with

of the approximation, and that for the structure function do not arbitrary numbers of species. For systems near Turing instabili-
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x 10° Appendix

A. General Solutions for the Stochastic Potential and
Correlation Function. In this Appendix, we find approximate
solutions to the multidimensional reactiodiffusion master
equation. We follow the method and notation of our previous
work on master equatiorf$2®> From the Hamiltonian eq 5,
Hamilton’s equations of motion forg, andpge = 9S©HXq, are

given by
Xgo _ 8H
dt 9Py,
= zwp(xq)vp(x eXp(; pqﬁvpﬂ)
P

D

o

d
+ ? IZ{ Xgo. [_exp(_pqa + p(qi—l)a)

-6

0 0.02 004 006 008 0.1 012 014 016 0.18 02
r

— exp(=p,, +
Figure 4. Dependence of the correlation functibpn on the distance p( Poa p(qi“)“)]

r for the same parameter values as in Figure 3. The solid line denotes + % . expEp,. .+

the exact solution, and thé curve denotes the approximation as X1 XPCPg-a + Pao)

described in Figure 2. + X(qi+l)on eXp(_p(qu)u + pqu)} (47)
ties, we developed an approximate solution for the structure dpqa 9H

functionh, from which equations for the potential and correla-

tion function were obtained. The approximate solution for the at 3Xq%w (x.)

correlation function is an exponentially damped sinusoidal — _ Z P [exp(S posv.s) — 1]

function (cosine in one-dimensional systems). The amplitude - 0%y Z ap” e

is inversely proportional to the square root of the smallest 5 d

eigenvalue (of the deterministic system), the correlation length ¢ [—exp=p,, + p ) —1

is the reciprocal of the half width of the structure function, and 2 IZ qo (@=L

the wavelength is near that of the Turing structure. Our theory

shows that long-range structured correlations in systems below + exp(pye + Pg 1) ~ 1 (48)
Turing bifurcations prefigure the spatially ordered macroscopic

state that occurs above the bifurcation. In these and the following expressions, we denote a change in

Our analysis also provides geometrical insight into fluctua- the value of a coordinate from that of the veciprby a
tions. The WKB approximation of the probability density of subscripted variable; all other coordinate values are equal to
reaction-diffusion master equations reduces the leading order h0Se 0fg. The deterministic equation is obtained from eq 47

behavior to a problem of classical mechanics. The Hamiltonian Wit p0= doétlrrﬁ-ﬁg?ﬁgi-mgngoffﬁh de'sftli('te;dtpoor:ntﬁbpqay)] e
of an associated system is expressed in terms of probabilities;éﬁﬂa g ! ime-invart Istributi ugh eq
of elementary reaction rates and jumps between mesoscopic For points close to the fixed point, the above equations may

sgale ce!ls. .In this approximation, the leading .order term, e approximated by linearizing about the stationary state:
eikonal, is given by the integral of the Lagrangian along a

classical trajectory. Fluctuational trajectories are projections of qua
classical trajectories onto concentration space. The stationary—— = ;Aaﬁuqﬁ + ;Buﬁyqﬂ
solution for the probability density of the master equation is  dt

described by solutions on the unstable manifold of the homo- D,
geneous stationary state of the deterministic equation. From this + — Z(_Zuq“ + Ug_1o T u(q-—l)a)
interpretation, most probable local fluctuations may be decom- 2 4 ' '
osed into unstable eigenvectors of the Jacobian matrix of A
P g +D.C, Z(qua ~ Yg-1a U(qi+l)(1) (49)
|

Hamilton’s equations.

Near the Turing bifurcation, higher order terms for the -
stochastic potential may be obtained through normal form qua - D,
transformations. These reduce the unstable manifold to that of? = _;AaﬁUQﬁ - ? Z(—Zuqa + Y(g-1)a + U(qi+1)a)
the linear approximation to arbitrarily high order. However, in ! (50)
general, these transformations diverge as the bifurcation point
is approached. To capture correct scaling and the potential atwhereug, = Xqa — Ca @Ndvge = Pgo — O are small deviations,
the bifurcation, the normal form for the Turing bifurcation point and
of the Hamiltonian system should to be studied.

aw,(cy)
Acknowledgment. We thank Dr. N. Hansen for helpful s Z ox Voo
discussions in early stages of this work. This work was P
supported in part by the Department of Energy, Basic Energy By = sz(Cs)Vpquﬂ (51)
Sciences, Engineering Program. o



1354 J. Phys. Chem. A, Vol. 103, No. 10, 1999

The matrixA is the Jacobian for the well-stirred deterministic
system, an® is the probability diffusion matrix of the Fokker

Vance and Ross

A simplification of the matricesv and W is possible by
factoring eigenvector solutions into a spatial and a concentration

Planck approximation of the master equation for the homoge- or momentum partw®) = pg)bﬂ), o) = pg)dg). We note thapyg

neous (well-stirred) system.
We note that in the limit of a continuous system, the above
equations become

a(u
ot \v

whereu = u(r, t) andv = u(r, t) are mdimensional vectors.
We may write the equations of motion for the deviations,
egs 49 and 50, more compactly in matrix form

o i)

whereu = Ugq, andv = vqq, aremrf vectors.M; andM; are
mrf' x mrf matrices, which for periodic boundary conditions
are

A+ DV? B— 2DCV?
0 —A" — DV?

u
v

(52)

d

o (53)

1~

A-D3ZD 0
M; =15 _ :

0 A-D

0 :

B+2DC -DC 0
M,=(-DC  B+2DC : (54)

0 : s

where we have written the part involving the matbxor only

= ezikahn gatisfies the eigenvalue equation for one coordinate
pq — (M2)pg-1 — (Y2)pgr1 = (1 — cos 2tk/n) pg, which appears

in egs 49 and 50. For @dimensional system, we introduce a
different notation and take the spatial function as

1

nd/2

eZnik-q/n

qu = (58)

wherek andq are m-dimensional vectors, withi = 1 — n/2,
..., N2 andg; = 1, ...,n. We have normalized these functions
so that} ¢QuQqgm = Oxm. Substituting this form into eq 56
results in the following eigenvalue equation for matriegsand

Fx whose columns are comprised of the solutioffsandd®,
respectively:

@kian§)=¢ﬁﬂ 59)
where
A =A-uD, B, =B+ 2uDC
d 27k,
Uy = IZ(l - COST) (60)

The matrix Ax is diagonal and contains the eigenvalues of
—(AJ)T (i.e., the eigenvalues of the deterministic system with
reversed sign). Thus, the stochastic potential for the discrete

the first two spatial coordinates. Similar terms appear for each cell problem is determined by the solutions to matrix eigenvalue

coordinate. We identifyM; as the Jacobian matrix of the
deterministic system ard, as the probability diffusion matrix.
The Hamiltonian for this system iB® = y-Mu + Y0

equations.
In the limit of infinitely many cells (for finite or infiniteL),
we have the corresponding problem with the matridggnd

M,v, where the superscript 2 denotes that only terms to second-Bx replaced by

order are kept. We approximate the stochastic potential near

the stationary solution using the corresponding Lagrangian

ds

=yl — H®
dt veu

=22 W) (55)

Assumingu, v starts from the stationary state (0, 0), we obtain
Su) = (Y,)u-v, whereu and v are solutions to eqgs 52 or 53.

The unstable manifold of the stationary state determines the

time-invariant density. In this linear approximation, we ap-

proximate the unstable manifold by eigenvectors in the unstable
space of the matrix in eq 53. We denote the eigenvectors

corresponding to eigenvalugs | = 1, ..., mrf, with positive

real parts asw®, »().

M; M, wi

0 —-M; Mo
1 v

" (56)

)

A() = A—5°D, B(y) =B + 2;5°DC
d
=

(61)

For finite L, the Fourier variablej; takes on discrete values,
27ki/L, k = 0, 1, ..., while forL — oo, the variabley; is
continuous. In both cases, the matridesind B only depend
upon the magnitude; and therefore, the eigenvalues and
eigenvectors, eq 59, also only depend on the magnitude

We factor the matricedV (respV) into a spatial matrixR
and a concentration matri (resp momentum matrik):

A deviation from the stationary state can be expressed in terms

of the eigenvectors), and from eq 55 the stochastic potential
can be determined. L&/ andV denote matrices whose columns
are the unstable eigenvector® and»(), respectively. Then, a
deviation can be writtem = Wy, v = Vy, for some vectoyy.
Then the stochastic potential is

—1' . :1‘ . 1
S= 2u v 2u VW u (57)

W=RE V=RF (62)
where
R= (1,Qq) (63)
and
E = diag€), F = diagF,) (64)

In eq 63, denotes then x m-dimensional unit matrix. The
vectorq labels the rows andl the columns, in which for each
value of q and k there is anm-dimensional diagonal block
consisting of elemer@q. From the orthonormality oQq, the
matrix Ris unitary,RR' = 1. From eq 57, the stochastic potential
is 1/,RFEIRT.
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Using the above factorization, we may express the stochasticFor increasing numbers of cells in a finite length system, the
potential in a simple form using the Fourier representation of a same relation holds fd&(»), in which Ac and B are replaced
periodic function. We write a deviation from the stationary state by those forA(;7) andB(z). For larger, the matricesA(r) and
as a Fourier series B(7) become—#2D and 2;°DC, respectively. The solution for

Ek in this limit is C. We separate this divergent part from the
ik sum and write the correlation function as
u — .I: — akaezn’lk q/n (65)
k=T=n/2
Wl Uy e LF (L/n) C
where 2

Z Z E C) 2mk (g—q")/n (73)
n Ld K=T=n2 k= T=n2

1
A, =— f 72~r|k g/n (66) .
n’d= Letting the number of cells and system length become large,
— o0, L — o, we obtain the continuous version:

oo qq

Then, using the above factorization dfand W, eqs 62-64,
and the structure of R, we obtain the following expression for [, (MU, (r)O= Cyp(r — ') +hy (r — 1)
the potential [for finite lengti and (even) number of celly:

, 1
pd 2 n2 oee(r = 1) =( d

S=— o Bk Doptis  (67)
2k1=Z—n/2 ku=Zn/2a, @ T T

where Zx = ExF«~1. The matrixZ satisfies a fluctuation
dissipation relation

E() ~ Oe €7l (74)

The delta function term originates from a Poissonian distribution
that is due to fluctuations caused by diffusion. The second term,
h, the structure function, is due to coupling between reaction
and diffusion, which causes long-range structure in spatial
Am L= AT LB — correlations. Using the property that the maify) is an even
AE T EA) T B =0 (68) function of, eq 68, we may limit integration to non-negative

which may be shown by solving each of the tmox m matrix values ofy;, i =1, ....d

equations in eq 59 faky and equating the resulting expressions.
The formula fom — « and finiteL is easily obtained from this ~ hy(r —r) == f j(; (EMm) — Oy X
equation and has the same form. In this case, the deviation is a 7
function of a continuous variabfér) andays denotes the Fourier cosy (ry = ry') === cosng (rg — rq) diy === diy (75)
transform off. Also, the matrixGy is replaced byE(y) = E(y)
F~1(), whereE(;7) andF(y) are solutions in the unstable space ~ B. Approximations for Systems Close to Turing Bifurca-
of the matrix eq 59 (withA and B defined in eq 61). Letting  tions. The correlation function and stochastic potential for one-
the system length increase,—~ «, we have dimensional systems has been approximated in section Ill.A
Iy using the leading order expression for the structure fun&ion
n 1 eq 41. This expression f@& may also be used in approximations
- E(T) f Zga(n) (5 (1)ap9s(m) dp - (69) for higher dimensional systems, sin&éy) only depends on
* the magnitude;.
where the integration is over the whole sp&en; = 27ki/L, We concentrate on three-dimensional systems, because of

ri = Lg/n andg, is the Fourier transform df;: their physical importan.ce. F!rst, the multiple int.egral in eq 74
can be reduced to a single integral by converting to spherical

coordinates. Integrating over the angles yields

9(1m) = ST (r) ar (70)

(Zvr)“

1 po 7 sinyr
h () =— En) —C)yy ——d 76
In making the transition from finite to infinite length, we have (1) 272 ﬂ) (=0n) aa r . (76)

written the single sum ovey, in the discrete, finité. problem,
as a double sum over andy’ and inserted a Kronecker delta where we denote the magnitude= |r — r'[, andnp « (r —r’)
dyys in the large system size limit, this double sum can be = #r cos6. Then using the approximation f&{x), eq 41, we
converted to a double integral and the Kronecker delta becomesobtain the explicit solution

a Dirac delta function:d,, ~ (27/L)o(y — 5'). The above result ]
for the stochastic potential gives the following expression for h (1) ~ NP 1 sinmgr - ﬁ vz
the approximate probability density in a large system: oo 27 ((10651)1/2 r

0

r) (77)

(2n)° - .

P~ exp(— .= d 71 whereay, andefy, and®, are determined by eqs 34, 38, and

2 f 9en) (r) 9Cn) chn D 42 of section Ill.A. We find that the amplitude and correlation
length are the same as for a one-dimensional system. In
particular, the amplitude diverges as the inverse of the square
root of the largest eigenvalue (of the deterministic system) and
the correlation length diverges as the inverse of the half width
of the structure function.

The spatial correlation function is related to the potential
(Y2)RFEIRT by MigoUq o = (AV) Y REF R")ga g« Using the
structure ofE, F, andR, we obtain the correlation function for
a finite length system composed of a finite number of cells:

n/2 n2
—d - 27ik-(q—q')/n
WUy = L Z Z (E) oo €7@ (72) References and Notes
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